2020年8月10日
本篇文章是 ECCV 2020 Oral ,来自 ETH 的最新大作。本文主要侧重点在于通过神经网络的方式在线选择不变性的局部特征。通过很少的计算量增加,该方法可以比较通用地扩展到各种检测和描述子中,极大地提升实际场景的匹配效果。
主要创新点如下:使用一个网络通过多任务学习的方式学习出适应多种变化组合的描述子提出了一种基于 meta descriptor 的轻量级在线选择不变性描述子的方式本文提出的多任务学习变化描述子以及在线选择不变性描述子的方式,可以拓展到任何传统或者基于 learning 的描述子上,具有很强的通用性。1 Learning the best invariance for local descriptors
为了说明选择最佳不变性描述子的意义,作者举了个例子:如上图所示,在纯旋转情况下 SIFT 可以有很好的表现,但是在没有旋转时, Upright SIFT (主方向固定为 (0, 1))...