分类: 深度学习

[TX2] Tensorflow 1.12.0 在 Jetson TX2 上的编译

系统环境 Ubuntu 16.04 Jetpack 3.2.1 on TX2 [Link](with CUDA 9.0 cuDNN 7.0.5) 1、编译准备 1)配置环境 Shell export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH 1 export LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH2)安装依赖 Java Shell sudo apt-get install openjdk-8-jdk 1 sudo apt-get install openjdk-8-jdkBazel (Tensorflow 使用 Bazel 0.15 编译,因此这里下载 0.15.2 版本,详情参见这里) Shell cd...

线性规划 (Linear Programming)

1 概念 在数学中,线性规划(Linear Programming,简称 LP)特指目标函数和约束条件皆为线性的最优化问题。 通常线性规划问题包含: 1)一个需要极大化的线性目标函数 (表示为 个决策变量 的加权和): 2)线性形式的问题约束,表示为 个决策变量满足 个方程约束或不等式约束: 3)决策变量非负,表示为: 2 标准型 描述线性规划问题最直观的形式就是标准型,通常表示为: 可以证明:任意线性规划的一般形式,都可以通过对目标函数取负、添加松弛变量等操作,化成标准形式。 3 对偶问题 下述例子来自维基百科,整体解释比较清晰: 一个线性规划问题(“原问题”)的对偶线性规划问题(“对偶问题”)是另一个线性规划问题,由原问题以一定方式派生而来:原问题中的每个变量都变为对偶问题中的一个限制条件; 原问题中的每个限制条件都变为对偶问题中的一个变量; 原问题若是求目标函数的最大值,则对偶问题是求最小值,反之亦然。3.1 对偶问题的构建 对于以下形式的两个线性规划问题:问题甲 问题乙最大化目标函数最小化目标函数n个变量n个限制条件第i个限制条件为 第j个限制条件为 第k个限制条件为m个限制条件第i个限制条件为 第j个限制条件为 第k个限制条件为m个变量...

Deep Local Feature 文章 & 数据收集

在 SLAM 中 Local Feature 的提取和匹配是一个比较重要的内容,近些年有很多相关的使用 Deep Learning 学习局部描述子的工作,这里做一下相关文章和代码收集。后续如有精力会进行速度和性能比较。 文章收集 数据收集...

Tensorflow C++ 从训练到部署(3):使用 Keras 训练和部署 CNN

在上一篇文章中我们并没有去训练一个真正的网络和解决一个实际问题,我们所做的是构建了一个 c = a * b 的计算图,并用 python 进行了保存和 c++ 进行了读取,这一保存和读取中也仅包含图的结构并没有相关参数。本篇文章中我们进一步以 Tensorflow 官方的 Fashion MNIST 为例,完成一个简单的分类问题。本文前面 Keras 训练模型以及转化到 Tensorflow 格式部分与之前一篇博客(Keras 转换成 Tensorflow 模型格式并使用)基本一致。本文主要包含: 1)Python:Fashion MNIST 数据集 2)Python:使用...

Keras 转换成 Tensorflow 模型格式并使用

Tensorflow 官方已经集成了 Keras 作为自己推荐的 High-Level API,Keras 的确使用非常方便,而且代码美观简洁,不像 Tensorflow 那样有很多形式化的代码。对于我们进行快速原型和实验是非常有帮助的。然而在一些场合我们可能需要混合使用 Keras 和 Tensorflow 定义模型或者保存模型的操作,这时就需要一些转换了。 系统环境 Ubuntu 16.04 Tensorflow 1.10.1 (内置:Keras 2.1.6-tf) 1、Fashion MNIST 数据集 1)数据简介 Fashion-MNIST [1] 是一个替代MNIST手写数字集的图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28×28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码 [11]。 典型的 Fashion-MNITST 数据是这样的,其中每三行表示一个类别:Fashion-MNIST...

Tensorflow C++ 从训练到部署(2):简单图的保存、读取与 CMake 编译

经过了 上一篇文章,我们已经成功编译了 tensorflow c++ 的系统库文件并且安装到系统目录下了。这里我们将使用这个编译好的库进行基本的 C++ 模型加载执行等操作。 注意,在本篇文章会使用 Tensorflow 的 Python API,因为比较简单,这里不做介绍,安装详见官网教程: https://www.tensorflow.org/install/ 0、系统环境 Ubuntu 16.04 Tensorflow 1.10.1 (安装详见官网,建议使用 pip 方式安装) 1、一个简单网络的保存 只有 c = a * b 的网络: Python #!/usr/bin/env pythonimport tensorflow as...

Tensorflow C++ 从训练到部署(1):环境搭建

很多人使用 Tensorflow 作为自己深度学习的实验工具,然而它只能用 Python 来训练和预测,对于实际生产而言,我们更多地会用 C++ 来放入自己工程中。例如一个典型的流程如下:1)在训练环节,我们仍然希望使用 Python 接口 2)在预测环节,我们使用 C++ 接口获取结果 这几篇博客我们就尝试按照上面的方式,完成从环境搭建、训练到部署的一整套流程。 0、系统环境 Ubuntu 16.04 Tensorflow 1.10.1 ProtoBuf 3.6.1 1、安装依赖 1)安装 JDK 8 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 或者到我的网盘下载: [Ubuntu] https://pan.baidu.com/s/1B2wpEVVqtP6JwBfEvEQsnw [Mac] https://pan.baidu.com/s/15zxVi7uJDmnJk6gQfov1Cw 2)安装依赖库: 使用如下命令: Shell sudo apt-get install pkg-config zip g++ zlib1g-dev unzip...

[Tensorflow] Mac OS 上 Tensorflow 1.0 安装(支持 CUDA)

Tensorflow 深度学习工具包已经出 1.0 正式版了,本文就是介绍如何在 Mac 上如何安装 GPU 版本。 0、运行环境: 软件环境: Mac OSX 10.12 Xcode 8.1 Python 3.5 CUDA Toolkit 8.0 cuDNN 5.1 Homebrew 硬件环境: CPU:3.5 GHz Intel Core i7 Memory:16 GB 1600 MHz DDR3 GPU:NVIDIA GeForce GTX...

[DNN] 《神经网络与深度学习》中文版及代码下载

Michael Nielsen 大神的 《Neural Networks and Deep Learning》 网络教程一直是很多如我一样的小白入门深度学习的很好的一本初级教程。不过其原版为英文,对于初期来说我们应该以了解原理和基本用法为主,所以中文版其实更适合初学者。幸好国内有不少同好辛苦翻译了一个不错的中文版本,并且使用 LaTex 进行排版以方便阅读。 教材下载: 这本书的中文版本如下: nndl-ebook.pdf 其官网如下: https://github.com/zhanggyb/nndl 源码下载: 原作者同时提供了书中的示例代码,这是我们学习的好工具,可惜其使用 Python 2.x 开发: https://github.com/mnielsen/neural-networks-and-deep-learning 如果您更熟悉 Python 3.x 版本,可以使用我这里修改的版本: https://github.com/skylook/neural-networks-and-deep-learning...

[iOS] mxnet 的 iOS 版本编译

0、编译环境: Mac OSX 10.11 Capitan Xcode 7.1 mxnet 0.5.0 0、下载 mxnet: 参考 sqlite 的方式,mxnet 也提供了一个 Makefile 文件用来生成单文件的版本。这样只需要一个文件加上 BLAS 依赖库就可以运行 predict 预测部分。这一文件移植到任何平台上都会比较容易。 下载 mxnet 版本: 1、生成 mxnet 单文件版: 修改 amalgamation 目录下的 Makefile 文件: 1)修改 OPENBLAS_ROOT...