Category: 深度学习

Keras 转换成 Tensorflow 模型格式并使用

Tensorflow 官方已经集成了 Keras 作为自己推荐的 High-Level API,Keras 的确使用非常方便,而且代码美观简洁,不像 Tensorflow 那样有很多形式化的代码。对于我们进行快速原型和实验是非常有帮助的。然而在一些场合我们可能需要混合使用 Keras 和 Tensorflow 定义模型或者保存模型的操作,这时就需要一些转换了。 系统环境 Ubuntu 16.04 Tensorflow 1.10.1 (内置:Keras 2.1.6-tf) 1、Fashion MNIST 数据集 1)数据简介 Fashion-MNIST [1] 是一个替代MNIST手写数字集的图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码 [11]。 典型的 Fashion-MNITST 数据是这样的,其中每三行表示一个类别: Fashion-MNIST...

Tensorflow C++ 从训练到部署(2):简单图的保存、读取与 CMake 编译

经过了 上一篇文章,我们已经成功编译了 tensorflow c++ 的系统库文件并且安装到系统目录下了。这里我们将使用这个编译好的库进行基本的 C++ 模型加载执行等操作。 注意,在本篇文章会使用 Tensorflow 的 Python API,因为比较简单,这里不做介绍,安装详见官网教程: https://www.tensorflow.org/install/ 0、系统环境 Ubuntu 16.04 Tensorflow 1.10.1 (安装详见官网,建议使用 pip 方式安装) 1、一个简单网络的保存 只有 c = a * b 的网络: Python #!/usr/bin/env python import tensorflow as...

Tensorflow C++ 从训练到部署(1):环境搭建

很多人使用 Tensorflow 作为自己深度学习的实验工具,然而它只能用 Python 来训练和预测,对于实际生产而言,我们更多地会用 C++ 来放入自己工程中。例如一个典型的流程如下: 1)在训练环节,我们仍然希望使用 Python 接口 2)在预测环节,我们使用 C++ 接口获取结果 这几篇博客我们就尝试按照上面的方式,完成从环境搭建、训练到部署的一整套流程。 0、系统环境 Ubuntu 16.04 Tensorflow 1.10.1 ProtoBuf 3.6.1 1、安装依赖 1)安装 JDK 8 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 或者到我的网盘下载: [Ubuntu] https://pan.baidu.com/s/1B2wpEVVqtP6JwBfEvEQsnw [Mac] https://pan.baidu.com/s/15zxVi7uJDmnJk6gQfov1Cw 2)安装依赖库: 使用如下命令: Shell sudo apt-get install pkg-config zip g++ zlib1g-dev unzip...

[Tensorflow] Mac OS 上 Tensorflow 1.0 安装(支持 CUDA)

Tensorflow 深度学习工具包已经出 1.0 正式版了,本文就是介绍如何在 Mac 上如何安装 GPU 版本。 0、运行环境: 软件环境: Mac OSX 10.12 Xcode 8.1 Python 3.5 CUDA Toolkit 8.0 cuDNN 5.1 Homebrew 硬件环境: CPU:3.5 GHz Intel Core i7 Memory:16 GB 1600 MHz DDR3 GPU:NVIDIA GeForce GTX...

[DNN] 《神经网络与深度学习》中文版及代码下载

Michael Nielsen 大神的 《Neural Networks and Deep Learning》 网络教程一直是很多如我一样的小白入门深度学习的很好的一本初级教程。不过其原版为英文,对于初期来说我们应该以了解原理和基本用法为主,所以中文版其实更适合初学者。幸好国内有不少同好辛苦翻译了一个不错的中文版本,并且使用 LaTex 进行排版以方便阅读。 教材下载: 这本书的中文版本如下: nndl-ebook.pdf 其官网如下: https://github.com/zhanggyb/nndl 源码下载: 原作者同时提供了书中的示例代码,这是我们学习的好工具,可惜其使用 Python 2.x 开发: https://github.com/mnielsen/neural-networks-and-deep-learning 如果您更熟悉 Python 3.x 版本,可以使用我这里修改的版本: https://github.com/skylook/neural-networks-and-deep-learning...

[iOS] mxnet 的 iOS 版本编译

0、编译环境: Mac OSX 10.11 Capitan Xcode 7.1 mxnet 0.5.0 0、下载 mxnet: 参考 sqlite 的方式,mxnet 也提供了一个 Makefile 文件用来生成单文件的版本。这样只需要一个文件加上 BLAS 依赖库就可以运行 predict 预测部分。这一文件移植到任何平台上都会比较容易。 下载 mxnet 版本: 1、生成 mxnet 单文件版: 修改 amalgamation 目录下的 Makefile 文件: 1)修改 OPENBLAS_ROOT...

[Mac] Mac 下安装 mxnet 库和基本使用

安装环境: Mac OS 10.11.1 Capitan Xcode 7.1 Python 2.7 mxnet 0.5.0 Homebrew 1、安装依赖库: 0)安装 Homebrew*: 后面的安装基本上都是使用 Homebrew 这个工具,如果你没有这个工具的话可以使用如下命令进行安装: Shell ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 1 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 1)安装 OpenCV: 为了方便依赖库的安装,我们这里使用 homebrew 进行库的安装和管理,有了这一工具后,您只需在命令窗口运行如下命令即可: Shell brew update brew tap homebrew/science brew...