论文笔记:ASLFeat: Learning Local Features of Accurate Shape and Localization
文章目录
本文是基于 D2-Net 的进一步改进,主要创新点如下:
1)使用 Deformable Convolution 来进行稠密的变换估计和特征提取
2)使用特征金字塔适应空间分辨率以及使用 low-level 细节来进行精确的特征点定位
1 Methods
1.1 Prerequisites
本文的网络设计基于以下两个工作:DCN 和 D2-Net,首先回顾这两个工作的主要思想:
Deformable convolutional networks (DCN)
可变形卷积 (Deformable Convolutional Networks, DCN) 的目的主要是学习动态感受野,对于传统卷积来说,其公式为:
\begin{equation}\mathbf{y}(\mathbf{p})=\sum_{\mathbf{p}_{n} \in \mathcal{R}} \mathbf{w}\left(\mathbf{p}_{n}\right) \cdot \mathbf{x}\left(\mathbf{p}+\mathbf{p}_{n}\right)\end{equation}
其中 \mathbf{p} 代表卷积的中心点坐标,\mathbf{p}_{n} 代表卷积 \mathcal{R} 范围内的偏移量,\mathbf{x}(\cdot) 表示取该点的像素值。而 DCN 就是在此基础上再加上一个 offset 预测 \Delta p 以及 feature 权重 \Delta m:
\begin{equation}\mathbf{y}(\mathbf{p})=\sum_{\mathbf{p}_{n} \in \mathcal{R}} \mathbf{w}\left(\mathbf{p}_{n}\right) \cdot \mathbf{x}\left(\mathbf{p}+\mathbf{p}_{n}+\Delta \mathbf{p}_{n}\right) \cdot \Delta \mathbf{m}_{n}\end{equation}
其中由于 \Delta p 一般都是小数,所以实际实现会用到非线性插值的方式。
D2-Net
D2-Net 核心思想是将 descriptor 和 detector 合二为一,describe-and-detect,通过学习一个 feature map ,获取 local descriptors 的方式就是 L2-Norm,而获取 detector 的方式则是在 y 上面进行如下计算:
计算 local score :
\begin{equation}\alpha_{i j}^{c}=\frac{\exp \left(\mathbf{y}_{i j}^{c}\right)}{\sum_{\left(i^{\prime}, j^{\prime}\right) \in \mathcal{N}(i, j)} \exp \mathbf{y}_{i^{\prime} j^{\prime}}^{c}}\end{equation}
其中 \mathcal{N}(i, j) 代表近邻像素范围,例如 3 \times 3 卷积就是 3 近邻共计 9 个像素。
计算 channel-wise-score
\begin{equation}\beta_{i j}^{c}=\mathbf{y}_{i j}^{c} / \max _{t} \mathbf{y}_{i j}^{t}\end{equation}
最终 detector score 由二者取 max 获得:
基于此本文提出了后面的改进。
1.2 DCN with Geometric Constraints
对于 DCN 作者认为原始版本自由度过高了,可能预测出任意形变,而对于视觉定位这个任务来说,形变是整体的只有有限的自由度,通常仅为 1) similarity, 2) affine and 3) homography:
因此传统的 DCN 学习了无关紧要的参数的同时还无法保证几何约束成立。对此作者使用几何约束进行了改进。
Affine-constrained DCN
通常一个包含旋转和缩放的 Affine Transform 变换如下:
\begin{equation}\mathbf{S}=\lambda R(\theta)=\lambda\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\-\sin (\theta) & \cos (\theta)\end{array}\right)\end{equation}
在一些文章例如 AffNet 中还引入了弯曲系数,因此本文仿照其将 Affine Transform 定义为:
Homography-constrained DCN
Homography 通常用4个点对可以求解,本文仿照 《Unsupervised deep homography》 文章中的方式用可微的线性求解器求 H 矩阵。通常一个线性方程定义为为:\mathbf{M h}=\mathbf{0},\mathbf{M} \in \mathbb{R}^{8 \times 9}。其中 \mathbf{h} 是一个9维向量表示 \mathbf{H} 矩阵的9个参数,其中需要满足 \mathbf{H}_{33}=1、\mathbf{H}_{31}=\mathbf{H}_{32}=- 三个约束条件,因此实际上是6个参数。重新改写线性方程为:\hat{\mathbf{M}}_{(i)} \hat{\mathbf{h}}=\hat{\mathbf{b}}_{(i)},其中 \hat{\mathbf{M}}_{(i)} \in \mathbb{R}^{2 \times 6} 并且对于每对匹配点(u_i, v_i) 与 (u_i', v_i') 有:
\begin{equation}\hat{\mathbf{M}}_{(i)}=\left[\begin{array}{cccccc}0 & 0 & -u_{i} & -v_{i} & v_{i}^{\prime} u_{i} & v_{i}^{\prime} v_{i} \\u_{i} & v_{i} & 0 & 0 & -u_{i}^{\prime} u_{i} & -u_{i}^{\prime} v_{i}\end{array}\right]\end{equation}以及:
\begin{equation}\hat{\mathbf{b}}_{(i)}=\left[-v_{i}^{\prime}, u_{i}^{\prime}\right]^{T} \in \mathbb{R}^{2 \times 1}\end{equation}最终构造线性方程如下:
\begin{equation}\hat{\mathbf{M}} \hat{\mathbf{h}}=\hat{\mathbf{b}}\end{equation}使用可微的线性求解器(tf.matrix solve)即可求解获得 \mathbf{h}。
在实践中,我们使用 {(−1, −1),(1, −1),(1, 1),(−1, 1)} 四个偏移量再乘以 \mathbf{H} 获得新的偏移量。
通过定义上述的所有几何变换 ,最终加入几何约束的偏移量使用如下公式获得:
\begin{equation}\triangle \mathbf{p}_{n}=\mathbf{T} \mathbf{p}_{n}-\mathbf{p}_{n}, \text { where } \mathbf{p}_{n} \in \mathcal{R}\end{equation}1.3 Selective and Accurate Keypoint Detection
Keypoint peakiness measurement
在 D2-Net 中,detector 的分数通过 spatial 和 channel-wise responses 来共同获得。在 channel-wise-score 计算中使用了 ratio-to-max,一个可能的影响是与其在 channel 上的实际分布关联变弱(?),基于此作者对于两个 score 做了如下改进(主要是希望使用峰值作为 detector d的分数标准):
\begin{equation}\beta_{i j}^{c}=\operatorname{softplus}\left(\mathbf{y}_{i j}^{c}-\frac{1}{C} \sum_{t} \mathbf{y}_{i j}^{t}\right)\end{equation}相应地:
\begin{equation}\alpha_{i j}^{c}=\operatorname{softplus}\left(\mathbf{y}_{i j}^{c}-\frac{1}{|\mathcal{N}(i, j)|} \sum_{\left(i^{\prime}, j^{\prime}\right) \in \mathcal{N}(i, j)} \mathbf{y}_{i^{\prime} j^{\prime}}^{c}\right)\end{equation}其中 softplus 激活函数如下:
\begin{equation}f(x)=\ln \left(1+e^{x}\right)\end{equation}Multi-level keypoint detection (MulDet)
D2-Net 关键点的定位精度不够,原因在于检测是从低分辨率特征图获得的。恢复空间分辨率的方法有多种(如下图所示),例如通过学习额外的特征解码器或采用膨胀卷积,但是这些方法要么增加了学习参数的数量,要么消耗了巨大的GPU内存或计算能力。
作者提出了一个简单而有效的解决方案,不需要额外的学习权重,通过利用卷积网络固有的金字塔特征层次,从多个特征层次组合检测,即一种分层的尺度融合方法。
\begin{equation}\hat{\mathbf{s}}=\frac{1}{\sum_{l} w_{l}} \sum_{l} w_{l} \mathbf{s}^{(l)}\end{equation}最终 score 的计算是把各层的相同位置 score 进行加权求和。
1.4 Learning Framework
Network architecture
最终的网络设计如下图所示:
与 VGG 的设计一样,每个尺度两个 conv,在最后一层使用了3层 deformable conv (conv6, conv7 和 conv8),MulDet 部分使用 conv1 conv3 conv8 三层特征。
公式 14 中的 w_{i}=1,2,3,公式 3 中 \mathcal{N}(i, j)=3,2,1。
Loss design
设 \mathcal{C} 代表图像对 (I, I^{\prime}) 中的特征点匹配对。与 D2-Net 类似定义 Loss 如下:
\begin{equation}\mathcal{L}\left(I, I^{\prime}\right)=\frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \frac{\hat{s}_{c} \hat{s}_{c}^{\prime}}{\sum_{q \in \mathcal{C}} \hat{s}_{q} \hat{s}_{q}^{\prime}} \mathcal{M}\left(\mathbf{f}_{c}, \mathbf{f}_{c}^{\prime}\right)\end{equation}其中 \hat{S}_{k} 和 \hat{S}_{k}^{\prime} 代表 (I 和 I^{\prime}) 对应 detector score,\mathbf{f}_{k} 和 \mathbf{f}_{k}^{\prime} 代表 descriptors,\mathcal{M}(\cdot, \cdot) 代表 ranking loss,这一部分代替了 D2-Net 中的 hardest-triplet loss。我们这里 \mathcal{M} 定义如下:
\begin{equation}\begin{array}{l}\mathcal{M}\left(\mathbf{f}_{c}, \mathbf{f}_{c}^{\prime}\right)=\left[D\left(\mathbf{f}_{c}, \mathbf{f}_{c}^{\prime}\right)-m_{p}\right]_{+}+ \\\quad\left[m_{n}-\min \left(\min _{k \neq c} D\left(\mathbf{f}_{c}, \mathbf{f}_{k}^{\prime}\right), \min _{k \neq c} D\left(\mathbf{f}_{k}, \mathbf{f}_{c}^{\prime}\right)\right)\right]_{+}\end{array}\end{equation}其中 D(\cdot, \cdot) 代表欧氏距离。m_p 和 m_n 分别为 0.2 和 1.0。
2 Experiments
2.1 Image Matching
实验结果如下:
2.2 Comparisons with other methods
实验结果如下
2.3 3D Reconstruction
实验结果如下:
2.4 Visual Localization
实验结果如下:
论文 & 源码
论文
https://arxiv.org/abs/2003.10071
源码
https://github.com/lzx551402/ASLFeat
参考材料
[1] https://blog.csdn.net/phy12321/article/details/106040545
[2] https://www.jianshu.com/p/c184c2efbecc