Category: 机器人

论文笔记:Online Invariance Selection for Local Feature Descriptors

本篇文章是 ECCV 2020 Oral ,来自 ETH 的最新大作。本文主要侧重点在于通过神经网络的方式在线选择不变性的局部特征。通过很少的计算量增加,该方法可以比较通用地扩展到各种检测和描述子中,极大地提升实际场景的匹配效果。 主要创新点如下: 使用一个网络通过多任务学习的方式学[......] 继续阅读 >>...

论文笔记:From Coarse to Fine: Robust Hierarchical Localization at Large Scale

0 Background 视觉定位是指,在大尺度场景下,已知环境地图,给定任意一张图片,计算出该图片对应的位姿。目前比较流行的方法是,由粗到细两步定位。先通过图像检索的方式找到最接近的关键帧,再与该关键帧匹配局部特征。由于关键帧位姿已知,所以通过PnP等方法可以估计出当前帧位姿。两步定位可以避免从[......] …...

论文笔记:UnsuperPoint: End-to-end Unsupervised Interest Point Detector and Descriptor

SuperPoint 的工作取得了巨大的成功,但是有一个非常明显的问题就是训练和真值获取非常困难(采用仿真辅助)。在实际场景中,想要进行人工标注再 finetune 是比较难的。因此本文提出了一种无监督学习的方式同时获得关键点与描述子,虽然无监督,但是在数据集上取得了很好效果的同时也达到了很快的速度[......] 继续阅读 >>...

将门创投分享《三维视觉与机器人》

document.getElementById("test").style.height=document.getElementById("test").scrollWidth*0.75+"px"; 1月16日我在将门创投在线直播分享了《三维视觉与机器人》,现将完整录像与 PPT 同步分享到这里[......] 继续阅读 >>...

使用 SVD 方法求解 ICP 问题

本文是结合《Least-Squares Rigid Motion Using SVD》和《Least-Squares Fitting of Two 3-D Point Sets》两篇文章写的一个总结,里面有一些是自己的理解不一定正确。 1 问题定义 假设我们有两个点云集合 和 ,则我们[......] 继续阅读 >>...

论文笔记:Dynamic Graph CNN for Learning on Point Clouds

DGCNN 是对 PointNet 的改进,PointNet 网络每个点单独提取特征缺乏局部关联。DGCNN 提出了 EdgeConv 就是对它的改进。 1 网络结构 DGCNN 网络结构如下图所示,可以看出其整体架构和 PointNet 是基本一致的,主要区别就是将其中的 MLP 替换成了 E[......] 继续阅读 >>...

论文笔记:GCNv2: Efficient Correspondence Prediction for Real-Time SLAM

GCNv2 是一个专门针对几何匹配的描述子网络,是对 GCN 的改进版主要工作如下:1)与常见深度学习特征匹配的性能并且显著减少了前向运算的时间;2)加入了二值化层,生成二值特征。 1 GCNv2 网络结构 GCNv2 网络结构如下图所示: 这一结构不必赘述,其实跟 SuperPo[......] 继续阅读 >>...

Semantic SLAM 文章收集

截至目前 Semantic SLAM (注意不是 Semantic Mapping)工作还比较初步,可能很多思路还没有打开,但可以预见未来几年工作会越来越多。语义 SLAM 的难点在于怎样设计误差函数,将 Deep Learning 的检测或者分割结果作为一个观测,融入 SLAM 的优化问题中一起联[......] 继续阅读 >>...

欧拉积分、中点积分与龙格-库塔积分

在 SLAM 系统中经常用到各种不同的数值积分方法,工程上最常见的有三种:欧拉积分(Euler method)、中点积分(Midpoint method)和龙格-库塔法积分(Runge–Kutta methods)。他们的区别就是如何用数值方法模拟一个斜率。这里简单总结如下: 一、欧拉积分 [......] 继续阅读 >>...